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Exact ground states for the Hubbard model on the Kagomk 
lattice 

Andreas Mielke 
lnstitut fiir theoretische Physik, Universitit Heidelberg, Philosaphenweg 19, D-6900 Heidel- 
berg, Federal Republic of Germany 

Received 20 March 1992 

Abstract. We give a complete and rigorous description of the ground states ofthe Hubbard 
model on the KagomC lattice for electron densities n and U >  0. I f$>  n 23 the system 
shows a ferromagnetic behaviour at zero temperature. If n is above the system is 
paramagnetic. The proof of these results uses some graph-theoretic methods. The results 
are applicable to all line graphs ofplanar lattices, afwhich the KagomC lattice is an example. 

1. Introduction 

In two previous papers [ I ,  21 we investigated the Hubbard model on a special class 
of lattices (or more general graphs), namely on lattices that are line graphs. The Kagom6 
lattice in two dimensions or the lattice of the octahedral sites of a spinel in three 
dimensions, already mentioned in [I], are weii known iattices, which are iine graphs. 
The Hubbard model [3,4] is defined by the Hamiltonian 

H = - txyc:oc,r + U 1 n,+n,-. (1.1) 
X . Y . 0  x 

We assume that txy is equal to t > 0 if the lattice sites x and y are nearest neighbours, 
0 otherwise. c:, and its adjoint cxr are electron creation and annihilation operators 
for electrons with spin U on the lattice sites. They satisfy the usual fermion anticommuta- 
tion relations. The main result of [ 1,2] was that this Hamiltonian on a line graph has 
ferromagnetic ground states with a saturated value for the spin if the number of particles 
N > M and LI > 0. M is a natural number that depends on the underlying lattice. For 
the KagomC lattice M = $ N ,  - 1 where N, is the number of lattice sites. We showed 
that if N = M, the ferromagnetic ground state is unique up to the usual degeneracy 
due to the SU(2) symmetry of the model. On the other hand, if N z M the ground 
state is no longer unique. If e.g. for the KagomC lattice the density is above z, the 
degeneracy of the ground state grows exponentially with the system size. 

In the present paper we give a complete description of the ground states of the 
Hubbard model (1.1) on a line graph for all N 3 M. Unfortunately, this is only possible 
for the two-dimensional case. A typical and perhaps the most important example is 
the KagomC lattice. We calculate upper and lower bounds on the ground state 
degeneracy. Using these bounds we are able to estimate the average spin of the ground 
states. We shall show that for the Hubbard model on the KagomC lattice the average 
spin of the ground states is an extensive quantity if the density is between f and 2 
(and for all U >  0). The model has a ferromagnetic behaviour at zero temperature. To 

0 3 0 ~ - ~ 1 0 / 9 z / i 6 4 ~ 3 5 + i i $ o ~ . S o  @ 1992 iOP Pubiishing i t d  4% 



4336 A Mielke 

our knowledge, this is the first rigorous result which gives ferromagnetism for the 
Hubbard model in a finite density range. Clearly such a result is only possible for 
finite systems or at zero temperature. At any T > 0 and in the thermodynamic limit, 
there is no ferromagnetic long range order in two dimensions [SI. If the density is 
above ?, the Hubbard model on the KagomC lattice shows a paramagnetic behaviour 
in the sense that the average spin of the ground states in no longer extensive. 

The general plan of this paper is as follows. In section 2 we give some preliminary 
definitions and state the main theorem. Section 3 contains the proof of the theorem. 
It is followed by some remarks conceming generalizations to line graphs of non-planar 
graphs. The reader who is mainly interested in the consequences may skip section 3. 
In section 4 we discuss the question whether the Hubbard model on a line graph shows 
a ferromagnetic behaviour at T = 0 in some finite density range using results from 
percolation theory. Section S contains some final remarks. 

2. Definitions and results 

By a graph we mean a collection of vertices (sites) and edges (bonds) between them. 
We exclude the possibility of multiple edges between a pair of vertices. Each finite 
part of a lattice is a graph. (We refer to an edge as a line between two nearest 
neighboured sites of the lattice.) A graph will be denoted by G = (V, E)  where V is 
the set of vertices and E is the set of edges. 1 VI is the number of vertices and I E I is 
the number of edges. The line graph L(G)  has the edges of G as vertices and two 
vertices are connected by an edge, if the corresponding edges in G have a vertex in 
common. As an example it is shown in figure 1 that the Kagomd lattice is the line 
graph of the hexagonai iattice. 

Figure 1. The hexagonal latticc (dashed lines) and its line graph, the KagomC lattice. 

We use some standard graph theoretical notions, which may be found in every 
standard textbook on graph theory, e.g. [6]. The words ‘walk‘, ‘path’, and ‘cycle’ have 
the obvious meaning. A walk of length n is a sequence e = (x,, e , ,  x,. e,, . . . , en-,, x.) 
where e, is an edge joining x, to xi+, . A path is a self avoiding walk and a cycle is a 
self avoiding closed walk. A graph is bipartite if it has two disjoint vertex classes VI 
and V, such that each vertex is either in VI or in V, and each edge joins a vertex of 
V, to a vertex of V,. A bipartite graph has only cycles of even length. A graph is 
planar, if it has a representation in the plane and the representation is referred to as 
a plane graph. The vertices and edges of a plane graph divide the plane into a set of 
connected components, called faces. Each plane graph has exactly one unbounded 
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face. Let F ( G )  be the set of bounded faces, then by Euler's formula IF1 = [El - I VI + 1. 
The boundary of each bounded face is called a facial cycle. UsuaIly f E F (G)  will 
denote either the face or the facial cycle. A graph G is k-connected (ka 1) if any two 
vertices of G can be joined by k disjoint paths. A 1-connected graph is connected. If 
G is not connected, it consists of different connected components. In  a 2-connected 
graph each edge is contained in a cycle. Further we need the adjacency matrix of the 
graph G A = (axy)x,yEv and the incidence matrix B ( G )  = (bxe)xe, ,eeE of G. axy = 1 if 
the two vertices are adjacent and a, = O  otherwise, b,, is equal to 1 if the vertex x is 
incident to the edge e ( x E ~ )  and zero otherwise. An induced subgraph of G is 
constructed by a subset of V and all the edges in G joining the vertices in this subset. 
From a given graph G we may construct new graphs by subdividing some of the edges 
of G by new vertices. Such a graph will be called a subdivision of G. 

In the following we will not deal directly with the Hamiltonian ( l . l ) ,  but with its 
particle-hole transformed version. Such a transformation may be introduced using the 
operator 

I = JJ (c:,+c,). (2.1) 

1' , T + _ I  - 1  :2.20: 

IC, = c:,r (2.26) 

IC:, = CJ. (2.2c) 

x o  

One bas immediately 

After a particle-hole transformation the sign of the kinetic energy is changed. One 
obtains with try = iaxy 

(2.3) 

In the following we take t = 1 and neglect the trivial constant U(l VI - N ) .  Further we 
omit the prime in (2.3), our Hamiltonian will be 

I H I + = H ' =  t z a,cLc,+ U E  n,+n,-+ U((V1- N ) .  
S Y . 0  x 

H =  1 aryc:rcF+ U 1  n,+n,-. (2.4) 
5Y.O I 

Since I is a unitary transformation, every result derived for H in (2.4) may be carried 
over to the original Hamiltonian in (1.1). Only the particle number N is replaced by 
2N,- N. 

Further we introduce the spin operators 

S+ = E  c:+c,-, S- = E  c:-c,+, S, =:(N+- N-) .  (2.5) 
x x 

They generate the global SU(2) spin symmetry of the Hamiltonian. The eigenstates 
of the Hamiltonian are assumed to be eigenstates of S, and S2 defined as usual 

s* = (S,)*+f(S+S- + S-S,). (2.6) 
The eigenvalues of Sz are S(S+l) and S will be called the spin of the eigenstate. In 
what follows we will make use of the main result of [2], namely: 

Theorem 0. Let L( G) be the line graph of G = ( V, E) and let H in (2.4) be the 
Hamiltonian on L(G) with N electrons. Let C = I El - I VI + 1 if G is bipartite, C = 
I E I - 1  VI otherwise. Then 

(i) H has ferromagnetic ground states with a saturated value S= N / 2  if N < C. 
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(ii) If G is 2-connected and bipartite and N = C, the ground state is unique apart 
from the degeneracy due to the SU(2) invariance?. 

(iii) For a subgraph G, of G let C, = IE,I - 1  V,l+ 1 if G, is bipartite, C, = 1E-I - I V,( 
otherwise. If two edge disjoint subgraphs G+ and G- of G exist such that N = C++ C - ,  
H has ground states with a spin S = IC+ - C-1. 
The result (i) follows from the fact that the adjacency matrix of the line graph L(G)  
has the form A = B(G)+B(G) -  2. The lowest eigenvalue of A is -2 and each element 
of the kernel of B(G)  is an eigenstate to this eigenvalue. C in theorem 0 is simply the 
multiplicity of the eigenvalue -2 and the eigenstates mentioned in the theorem are 
constructed as Slater determinants from some single particle eigenstates of the eigen- 
value -2 of the kinetic energy. 

A basis of the kernel of B(G) may be constructed as follows. Since G is bipartite 
with vertex classes V, and V, each edge in G may be oriented from VI to V,. 
ru iuIcrII Iucc ,  cacn iaciai cyuc J t r\ui wui we unenieu FIWKWISC. w e  now uenne 

d,(e) = 1 

F.....L ---L &---:-, r -  e,,., __:I* I. ..:._A.> .a.., .... :.. 1.1- ~~~~~~ > - , - .  

iff  contains e and e and f have the same orientation 

d,(e) = -1 iff  contains e and e and f have opposite orientation (2.7) 

d,(e) = 0 

The set { d , , f e F ( G ) }  is a basis (not orthonormal) of the kernel of B(G) [6,7]. 
Let G, be a subgraph of the bipartite plane graph G. Clearly, G, is a bipartite 

plane graph as well. Let F, be a subset of the facial cycles of G, and let @,,(Fv) be 
the Slater determinant of all the states d,, f~ F, with electrons with a spin U. We 
mention that a facial cycle of G, is a cycle of G, but not necessarily a facial of G. On 
the other hand, each f e  F, is a sum of some elements of F ( G ) .  Now let G, and G- 
be a pair of edge disjoint subgraphs of G and let F+ and F- be of subsets of the faciai 
cycles of G+ and G- respectively. Then we define 

@(F+,  F_)  = @+(F+)@-(F-)  (2.8) 

@(F+,  F-) is an eigenstate of the r-component S, of the spin, S, = IF+I -1F-1, but it is 
not an eigenstate of S2. It contains components for all spins S 2 I lF+l- IF-I 1. Let P, 
be the projector onto the subspace of given spin S, then we define 

@,.,(F+, F - ) = S : p s @ ( F + ,  E )  (2.9) 

iff does not contain e. 

where n and the sign are chosen such that the state is an eigenstate of S, with the 
eigenvalue m. The states mentioned in (iii) of theorem 0 are constructed in this way. 
We are now able to state the main result of this paper. 

Theorem 1. Let H be the Hamiltonian (2.4) of the Hubbard model with N electrons 
on a line graph L( G) where G = (V, E) is a 2-connected, bipartite plane graph. Let 
N S I El - 1  VI + 1. The eigenspace of the ground states of H for fixed S and S, = m is 
spanned by the states (2.9). 

t We should mention that (ii) was formulated for non-bipartite graphs as well in [Z]. But the proof as given 
in [2] is only valid for the case of bipartite graphs and in the case of a non-bipartite graph one needs an 
additional assumption which is mainly technical. (For instance, (ii) is true for a nombipartite graph G that 
is a 3-wnnected graph or a subdivision of a 3-connected graph.) Here we will treat the case of bipartite 
graphs only. 
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G+ and G- are not necessarily connected, but it is possible to restrict the set of 
pairs G+ G- to such subgraphs G, or G- that have only 2-connected components. 
Theorem 1 is in some sense the inverse of part (iii) of theorem 0. The proof of this 
theorem uses some elements of graph theory and will be presented in the subsequent 
section. The reader who is mainly interested in the consequences of this theorem may 
directly pass to section 4. 

3. Proof of theorem 1 

Let G be a 2-connected, bipartite plane graph and let 

sfS= - 1 d,(e)dK(e)  f, g E WG) 
< S E  

(3.1) 

The matrix S = ( s , ~ ) ~ ; ~ ~ ~ ( G )  is regular and we denote by S-l the inverse, which has the 
components (S-'),s. Let us now define the operators 

d&= Z df(e)c' ,  (3.2) 

where CL is the creation operator of an electron with a spin U on the vertex e of the 
line graph L(G),  which is also an edge e of G. Furthermore we introduce 

.EE 

(3.3) 

where c, is the usual annihilation operator of an electron. d is not the adjoint operator 
of d', but its dual. They obey the usual anticommutation relations for fermions 

d,& +d&.d, = 8JX8. (3.4) ' A basis of N-particle states constructed with the operators d +  is not an orthonormal 
basis, so it is not identical to its dual basis. Due to (3.4) the dual basis may be formed 
using the operators d. Each N-particle state with kinetic energy -2N may be written 
as 

(3.5) 
Any state I@) is a ground state of the Hamiltonian (2.4) with N S  IF1 on L(G)  if and 
only if there is no doubly occupied site, i.e. 

C.+CJ@)  = 0 for all e E E. (3.6) 
If we restrict ourselves to states of the form (3.5). the condition (3.6) may be written as 

ai',(d,+-dK+)(d,-- ds-)lW = O  (3.7~1) 

+ 1@)=1 @(fi,. . . ,fN; U,, . . . , V N ) d i m l . .  . d,Nc+" 

for all f, g E F( G )  

and 

a$,d,+df-l@)= 0 for all f e  F(G)  (3.7b) 

where 

a$=o for all f 

aj8 = 1 

aj8 = 0 

iff and g have one edge in common 
iff  and g have no edge in common. 

(3.8) 

f and g are facial cycles of G, the cycle of the unbounded face is denoted by 0. We 
note that (aj8) is the adjacency matrix of the dual graph of G. 
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From the conditions (3.7) it follows that if theorem 1 is true for some G, it is true 
for each bipartite subdivision of G, since the algebra of the operators d and d+ and 
the matrix (ofz) are the same for both. Furthermore it is clear that theorem 1 holds 
for all bipartite, 2-connected graphs with less than eight edges. These graphs are 
presented in figure 2. GI and G2 contain only one facial cycle and N has to be one. 
In these cases the theorem is trivial. G3 and G4 contain two facial cycles and N may 
be one or two. In the case N = 2 we have only the unique ferromagnetic ground state 
due to theorem 0, the case N = 1 is trivial. So theorem 1 holds for all these graphs. 
We now have to introduce the concept of a bridge of a cycle [7]. A bridge K of a 
cycle c in G is either an edge of G not belonging to c that is incident to two vertices 
of c or a component of G-c (this is the graph obtained from G by deleting all the 
vertices of c and all the edges incident to these vertices) together with all the vertices 
of G adjacent to K and all the edges of G incident to K.  The facial cycles of G, and 
GI have one bridge, the bridge of the cycle of the unbounded face of G4 consists of 
a single edge only. Now it is clear that theorem 1 holds for all G with the property 
that there is no cycle with more than one bridge. In fact, if G has no cycle with more 
than one bridge, it must be one of the graphs G, to G4 or a subdivision of one of 
these graphs (see lemma 1.6.4 in [7]). Let G be a graph with a cycle with at least two 
bridges. Then G has two facial cycles f and g such that the cycle c =f+ g has exactly 
two bridges. One of them is fn g. Let G’ be the subgraph of G obtained by deleting 
the edges and the inner vertices of f n  g from G. G’ is 2-connected, bipartite and 
planar if G has these properties. Each ground state of H on L( G )  with N electrons 
may be written as 

(3.9) 
where I Q i )  are states of the form (3.5) on L ( G ) .  Since I@) is a ground state, there is 
no term with a double occupancy on f-g. This follows also from (3.7). Let now 

(3.10) 

I@) = I@i) + (dT+ - d:+)1@2) + ( d j -  - d;-)l@,) 

d:, = d&-t d i m ,  d,, =;(dl, f dzv). 
using these operators we obtain from (3.7) 

afh[(d++- dh+)(d+- - dh-)I@i) + (d++ -dh+)l@d -(d+- - dh-)1@2)1= 0 
a$[(d++- dh+)(d+- - dh-)l@i)+ (d++ - dh+)l@i) - (d+--  dh-)1@2)1= 0 
a;o[d++d+-l@d+ d++~@~)-d+-I%)l=O 

(3.1 1 a -f ) 
a~o[d++d+-l@l)+d++l@3) - d+-1Q2)1 = 0 
a ~ h ( d k + - d h + ) ( d k - - d h - ) l @ P i ) = O  

athdh+dh-l@J = 0 

where h and k are facial cycles of G not equal to c and i = 1,2,3. From these conditions 
it follows that IQ2) and I@,) are ground states of H on L( G )  with N - 1 electrons. 
The equations for IOl) may be solved with the ansatz 

1@1)=x - a $ ) ( d l + k ) +  &-1@3))+ I@:) (3.12) 

where the sum runs over all h E F(  G’), h not equal to c. To formulate the conditions 
obtained for I@:), let us now define the distance of two facial bounded cycles h and 
k as the smallest integer n 0 such that the matrix element of the nth power of S 
(S”), ,  is not zero. This integer is called d(h,  k). Further we introduce 

& I =  1 if d ( h , k ) = n  
aL’=O otherwise 

(3.13) 
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(3.17) 

(a+ - dk+)(dh-- & ) I @ ; )  = 0 

This process may be iterated. Let d ( G )  be the largest distance between two facial 
bounded cycles of G, then it terminates after at least d (  G )  steps. The final result is 

(3.18) 

where the sum over h excludes e as before. The final conditions for I@?‘“’) are 

a;lx(dh+-d,+)(dh--dk-)l@i d ( C ) )  = 0 (3.19) 

where h and k are not equal to c. Since 
d ( G )  d ( C )  

k - 1  k = 1  
Z a$’= a$’ (3.20) 

(3.21) 

The representation of G in the plane may now be chosen such that a$o-a,do=O. This 
is always possible. Then it follows from (3.11), (3.19) and (3.21) that I@,) is a ground 
state of the Hamiltonian H on L( G’) as it was shown for I@*) and la3) before. But, 
if I@,) is a ground state of H on L ( G ) ,  the conditions (3.11a-d) read 

(a$ + aih)[(d++ - dh+)l%) - ( d + -  - dh-)l%)I= 0 
(3.22) 

(a~o+a~o) (d++l@~)-d+- l@2))=0.  
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This shows that the expression 

(3.23) 
has no singlet on the cycles f+ g or f- g and a neighboured cycle h. The only singlet 
that is allowed (only if ajo=a$=O) is a singlet on f + g  orf-g andf+g+Xh where 
the sum is over all neighboured cycles o f f  and g. But this cycle has no edges with 
f + g  o r f -g  in common. This result may be used to prove theorem 1 by induction 
on the number of edges of the graphs. Theorem 1 is true for all bipartite 2-connected 
plane graphs with at most seven edges. Suppose theorem 1 to be true for all bipartite 
2-connected plane graphs with at most m edges. Let now G be a graph with m + 1 
edges. If G has only cycles with at most one bridge, we know already that theorem 1 
is fulfilled. Let us therefore consider a graph G with at least one cycle with two bridges. 
From the construction above we know that each ground state of H on L(G) may be 
written in the form (3.9) where the IQj) are ground states on L(G’). By our induction 
hypotheses these states are linear combinations of the states (2.9), since G has at most 
m edges. We already know that the electrons on fk  g in IQ) - I@,) do not form a singlet 
with electrons on other cycles having an edge with f i g  in common. Therefore, it is 
possible to write the right hand side of (3.23) as a linear combination of the states 
(2.9) as well. Then IQ) is a linear combination of these states. This proves theorem 1. 

A straightforward generalization of theorem 1 to non-planar graphs is not possible. 
From the theorem of Kuratowski we know that a graph is planar if and only if it does 
not contain a subgraph that is a subdivision of the complete graph K S  or of the complete 
bipartite graph IC3,] (see e.g. [6,7]). The diagonalization of the Hubbard model on the 
line graph of or on the line graph of a bipartite subdivision of K5 is easily done 
numerically. One finds that the Hubbard model (2.4) on L(K,,)  has a ground state 
with S = 0 for N = 2, but it is not possible to find two edge disjoint subgraphs G, and 
G- as needed to construct a ground state of the form (2.9) with S = 0 for N = 2. The 
same problem occurs for the line graph of a bipartite subdivision of K , .  The construction 
of the states and especially the proof of theorem 1 uses the possibility to construct a 
basis of the kernel of B(G)  using the facial cycles of G. In fact, this basis has the 
property that each edge of G belongs to at most two elements it. S MacLane proved 
in 1937 the well-known result that a graph is planar if and only if such a basis exists 
[7]. Therefore, we may understand why our result holds only in the case of line graphs 
of plane graphs. 

I@)- I Q l )  = dZ+(Q2)+ dT-lQl) 

V 
Flpure 2. The 2.connccfsd bipartite plane graphs with at most seven edges. 
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4. Ferromagnetic versus paramagnetic behaviour 

Theorem 1 gives us a complete description of the ground states of the Hamiltonian 
(2.4). Since the ground states are degenerate, it is not clear whether the model shows 
a ferromagnetic behaviour or not, although there are some ferromagnetic ground states 
amongst them. In the following we will study the magnetic behaviour of the model 
(2.4). For simplicity we restrict ourselves to the case of regular lattices. In the following 

lattice. As a typical case we take the hexagonal lattice, L(G) will be (a large but finite 
part of) the KagomC lattice in this case. To decide the question of the ferromagnetic 
behaviour, we will look at the ground state expectation value of Sz given by 

G .ki!! be a sue,&i;;:4. laige kGt eniie paii of a iwo-;~meiis~onai regup& 

( S 2 ) = x  d ( N ,  S)(ZS+l)S(S+l) d ( N ,  S)(2S+1) (4.1) 
/s 

where d(N,  S) is the degeneracy of the ground state of (2.4) for fixed N, S, and S. 
We say that the system is ferromagnetic if ( S 2 ) / N 2  tends to a finite value for large 
system sizes (finite size effects are assumed to be negligible). Otherwise the system is 
paramagnetic. 

The set formed by the states (2.9) is not necessarily linearly independent. In fact, 
if N is well below I FI, there are many linearly dependent states. Therefore, it is difficult 
to calculate d (  N, S). But we are able to give some upper and lower bounds on d (  N, S ) .  
A lower bound is obtained by choosing a suitable subset of linearly independent states 
of the form (2.9). This may he done as follows. Let Go be the graph obtained from 
the dual graph of G by deleting the vertex corresponding to the unbounded face of 
G and the edges incident to this vertex. The vertices of Go are the elements of F ( G ) .  
Let V,, be the set of vertices of some induced subgraph Go, of Go. We define the 
states ar( Vom) as the Slater determinant of the single particle states d ,  f E Vo, with 
electrons with a spin U. Let now Go+ and Go- be a pair of induced subgraphs of Go 
such that no vertex of Go+ is adjacent to a vertex of Go-. Then we let @( Vo+, Vo-) = 
@+( Vo+)@-( Vo-) and 

@,,,(VO+, Vow) = S:ps@(vo+, vo-1 (4.2) 
as before. The states (4.2) form a set of linearly independent states, but not necessarily 
a basis of the space spanned by the states (2.9). Let do(N, S) be the manner of states 
(4.2) for fixed N, S, and S, then 

On the other hand, the states (2.9) which are not linear combinations of the states 
(4.2) are states where F+ (or F-) contains a cycle c such that some elements of F_ (or 
F+) and thus a component of G- (G+)  lies inside c. Clearly, such a cycle c contains 
more edges than a facial cycle of the lattice G. Due to the construction of the states 
(2.9) it is not possible to place an electron with spin - (or +) on a facial cycle that 
has an edge in common with c. The number of facial cycles that have an edge in 
common with c is much larger than the number of facial cycles that have an edge in 
common with a given facial cycle. Therefore, the number of linearly independent states 
that contain such a larger cycle is smaller than do(N, S). This shows that 

d ( N ,  S) < 2do( N, S). (4.4) 

(S2)o/2S (s2)S2(sz)o (4.5) 

do( N, S) S d (  N, S ) .  (4.3) 

As a simple consequence of the two inequalities (4.3). (4.4) we obtain 
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where 

(Sz),=X dn(N, S)(2S+I)S(S+l) dn(N, S)(2S+1). Is  (4.6) 

Therefore, instead of ( S 2 ) / N 2  we may study the behaviour of (S2),/ N* for large system 
sizes. A pair of subgraphs Gn+, Go- may be constructed as follows: We choose a set 
P of N vertices of Go at random. Then we take the subgraph of Go induced by P. 
1 1 1 m  lll"Ulr" U U " 6 L a p . n  L1'l.) nS..lr.aLL CUI.LICit,LCi" cuL"pu"c'L'z.. *.Y ,U,.,, Y o +  a,," "0- oiii 
of these components such that the union of Go+ and Go- is the induced subgraph. 
Each pair of subgraphs is obtained in this way. This means that we have to study the 
site percolation problem on Go (for a review see e.g. [8]). With probability p = N/IFI 
we choose some vertices from Go. If p is above the critical value pc ,  we have with 
probability 1 an infinite component on the lattice, the percolation cluster. All the other 
components are finite. Therefore ( S 2 ) , / N 2  tends to  some finite value if the density of 
electrons is above pc(lFl/Ns).  If the probability p is below pc the situation changes 
drastically. There is no infinite component and the system becomes paramagnetic. The 
value of pc is well-known for various lattices. If L ( G )  is the Kagomt lattice, G is the 
hexagonal lattice and Go is the triangular lattice. In this case p,=f and IFl/N,=f. 
Therefore, we conclude that the Hubbard model (2.4) on the Kagom6 lattice behaves 
ferromagnetic at T=O for densities between f and a. 

Transforming back to the original Hamiltonian (l . l) ,  the density n has to be replaced 
by 2- n. Therefore the Hubbard model (1 .1 )  shows a ferromagnetic behaviour on the 
Kagomt Lattice for densities between f and y. Instead of the Kagomt lattice, we may 
take any line graph of a planar bipartite lattice. Then pc  will be different, nevertheless 
one finds a ferromagnetic behaviour in some finite density range as well. The line 
graph of e.g. the square lattice is a square lattice with cross hoppings on half of the 
squares. We have IF]/ N, = f. Its dual lattice is the square lattice as well and pc = 0.593 
[8]. The ferromagnetic behaviour occurs if 1.703> n 3 1.5. 
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5. Final remarks 
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that is a line graph behaves ferromagnetic for N M = 2 N, - IF1 as long as N is not 
too large. On the other hand, if N > M, the ground state degeneracy is very large and 
small perturbations will be important. Therefore, a realistic system on e.g. the KagomC 
lattice will certainly not show the ideal behaviour of the Hubbard model. There are 
mainly two perturbations which may be discussed. The first is an interaction with some 
longer range. The effect of such contributions in a single-band model has been 
investigated by Hirsch [9]. The results seem to indicate that an interaction of longer 
range favours ferromagnetism. Although rigorous results are not available, this may 
be the case in models with more than one band as well. The second perturbation that 
may be important is a single particle operator that perturbs the kinetic energy of the 
Hamiltonian. Such a perturbation will lift the degeneracy of the highest energy band 
on a line graph. Therefore, ferromagnetism will be disturbed for small U. But one may 
hope that above some critical interaction strength ferromagnetism persists. 

In [ I ,  21 possible generalizations of the results for the Hubbard model on line 
graphs have been discussed. Similarly theorem 1 may be camed over to these cases 
as well. W.e mention especially the case of the graph S(G) which is constructed from 
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G = ( V ,  E) by subdividing each edge by a new vertex into two new edges. An example 
is the two-dimensional CuOz sublattice in the high-temperature superconductors, in 
this case G is simply the square lattice formed by Cu. If one introduces the Hubbard 
model on S (  G )  with nearest and next nearest neighbour hoppings and on-site potentials, 
the different parameters of the model may be chosen such that the single particle part 
of the Hamiltonian has a highest energy band, which is Bat [2]. In this case we have 
a complete analogy between the ground states of (1.1) on L(G)  discussed above and 
the ground states of this model. 

As a consequence of a theorem of Lieb [lo], the Hubbard model (1.1) on S ( G )  
(without next-nearest neighbour hopping!) has a ferromagnetic ground state if N = N,. 
In [2] we pointed out the relation between his result and ours. It would be interesting 
to see, whether one has a ferromagnetic behaviour in this case in a finite density range 
around half filling. One may hope that in this case there is no large ground state 
degeneracy and that one has on!y some ferromagnetic ground 5tate9. 
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